Skip to main content

7.5 极坐标中的平面问题

Course NotesEngineering Mechanics for Civil EngineeringAbout 2 minAbout 732 words

7.5 极坐标中的平面问题

平衡方程

\pdvσrr+1r\pdvτrθθ+σrσθr+fr=0\pdvτrθr+1r\pdvσθθ+2τrθr+fθ=0 \begin{align*} & \pdv{\sigma_r}{r} + \frac{1}{r} \pdv{\tau_{r \theta}}{\theta} + \frac{\sigma_r - \sigma_{\theta}}{r} + f_r = 0 \\ & \pdv{\tau_{r \theta}}{r} + \frac{1}{r} \pdv{\sigma_{\theta}}{\theta} + 2 \frac{\tau_{r \theta}}{r} + f_{\theta} = 0 \end{align*}

几何方程

εr=\pdvurrεθ=1r\pdvvθθ+urrγrθ=1r\pdvurθ+\pdvvθrvθr \begin{align*} \varepsilon_r & = \pdv{u_r}{r} \\ \varepsilon_{\theta} & = \frac{1}{r} \pdv{v_{\theta}}{\theta} + \frac{u_r}{r} \\ \gamma_{r \theta} & = \frac{1}{r} \pdv{u_r}{\theta} + \pdv{v_{\theta}}{r} - \frac{v_{\theta}}{r} \end{align*}

uru_r — 径向位移; vθv_{\theta} — 环向位移

本构方程
应变 - 应力

εr=1E(σrνσθ)εθ=1E(σθνσr)γrθ=1Gτrθ \begin{align*} \varepsilon_r & = \frac{1}{E} \pqty{\sigma_r - \nu \sigma_{\theta}} \\ \varepsilon_{\theta} & = \frac{1}{E} \pqty{\sigma_{\theta} - \nu \sigma_r} \\ \gamma_{r \theta} & = \frac{1}{G} \tau_{r \theta} \end{align*}

应力 - 应变

σr=2G1ν(εr+νεθ)σθ=2G1ν(εθ+νεr)τrθ=Gγrθ \begin{align*} \sigma_r & = \frac{2 G}{1 - \nu} \pqty{\varepsilon_r + \nu \varepsilon_{\theta}} \\ \sigma_{\theta} & = \frac{2 G}{1 - \nu} \pqty{\varepsilon_{\theta} + \nu \varepsilon_r} \\ \tau_{r \theta} & = G \gamma_{r \theta} \end{align*}

协调方程

\pdv[2]εθr+1r2\pdv[2]εrθ1r\pdvγrθrθ+2r\pdvεθr1r\pdvεrr1r2\pdvγrθθ=0 \pdv[2]{\varepsilon_{\theta}}{r} + \frac{1}{r^2} \pdv[2]{\varepsilon_r}{\theta} - \frac{1}{r} \pdv{\gamma_{r \theta}}{r}{\theta} + \frac{2}{r} \pdv{\varepsilon_{\theta}}{r} - \frac{1}{r} \pdv{\varepsilon_r}{r} - \frac{1}{r^2} \pdv{\gamma_{r \theta}}{\theta} = 0

应力函数解法基本方程

(\pdv[2]r+1r\pdvr+1r2\pdv[2]θ)(\pdv[2]r+1r\pdvr+1r2\pdv[2]θ)ϕ=0 \pqty{\pdv[2]{r} + \frac{1}{r} \pdv{r} + \frac{1}{r^2} \pdv[2]{\theta}} \pqty{\pdv[2]{r} + \frac{1}{r} \pdv{r} + \frac{1}{r^2} \pdv[2]{\theta}} \phi = 0

极坐标应力公式

σr=1r2\pdv[2]ϕθ+1r\pdvϕrσθ=\pdv[2]ϕrτrθ=1r2\pdvϕθ1r\pdvϕθr=\pdvr(1r\pdvϕθ) \begin{align*} \sigma_r & = \frac{1}{r^2} \pdv[2]{\phi}{\theta} + \frac{1}{r} \pdv{\phi}{r} \\ \sigma_{\theta} & = \pdv[2]{\phi}{r} \\ \tau_{r \theta} & = \frac{1}{r^2} \pdv{\phi}{\theta} - \frac{1}{r} \pdv{\phi}{\theta}{r} = - \pdv{r}(\frac{1}{r} \pdv{\phi}{\theta}) \end{align*}

边界条件
位移边界 Γu\Gamma_u

ur=ur,vθ=vθ u_r = \overline{u}_r \qc v_{\theta} = \overline{v}_{\theta}

力边界 Γσ\Gamma_{\sigma}

σrcos(v,r)+τrθcos(v,θ)=Rτrθcos(v,r)+σθcos(v,θ)=Θ \begin{gather*} \sigma_r \cos(v, r) + \tau_{r \theta} \cos(v, \theta) = \overline{R} \\ \tau_{r \theta} \cos(v, r) + \sigma_{\theta} \cos(v, \theta) = \overline{\Theta} \end{gather*}

在环向边界 (r=constr = const) 上:

σr=Nr(θ),τrθ=Tr(θ) \sigma_r = \overline{N}_r(\theta) \qc \tau_{r \theta} = \overline{T}_r(\theta)

在径向边界 (θ=const\theta = const) 上:

σθ=Nθ(r),τθr=Tθ(r) \sigma_{\theta} = \overline{N}_{\theta}(r) \qc \tau_{\theta r} = \overline{T}_{\theta}(r)

7.6 轴对称问题

应力函数解法

应力公式

σr=1r\pdvϕr,σθ=\pdv[2]ϕr,τrθ=0 \sigma_r = \frac{1}{r} \pdv{\phi}{r} \qc \sigma_{\theta} = \pdv[2]{\phi}{r} \qc \tau_{r \theta} = 0

通解

ϕ=Alnr+Br2lnr+Cr2+D \phi = A \ln r + B r^2 \ln r + C r^2 + D

应力分量

σr=Ar2+B(1+2lnr)+2Cσθ=Ar2+B(3+2lnr)+2Cτrθ=0 \begin{align*} \sigma_r & = \frac{A}{r^2} + B \pqty{1 + 2 \ln{r}} + 2 C \\ \sigma_{\theta} & = - \frac{A}{r^2} + B \pqty{3 + 2 \ln{r}} + 2 C \\ \tau_{r \theta} & = 0 \end{align*}

应变分量

εr=1E\bqty(1+ν)Ar2+(13ν)B+2(1ν)×Blnr+2(1ν)Cεθ=1E\bqty(1+ν)Ar2+(3ν)B+2(1ν)×Blnr+2(1ν)Cτrθ=0 \begin{align*} \varepsilon_r & = \frac{1}{E} \bqty{\pqty{1 + \nu} \frac{A}{r^2} + \pqty{1 - 3 \nu} B + 2 \pqty{1 - \nu} \times B \ln{r} + 2 \pqty{1 - \nu} C} \\ \varepsilon_{\theta} & = \frac{1}{E} \bqty{- \pqty{1 + \nu} \frac{A}{r^2} + \pqty{3 - \nu} B + 2 \pqty{1 - \nu} \times B \ln{r} + 2 \pqty{1 - \nu} C} \\ \tau_{r \theta} & = 0 \end{align*}

位移分量

ur=1E\bqty(1+ν)Ar+2(1ν)Brlnr(1+ν)Br+2(1ν)Cr+Icosθ+Ksinθvθ=4BrθE+Hr+KcosθIsinθ \begin{align*} u_r & = \frac{1}{E} \bqty{- \pqty{1 + \nu} \frac{A}{r} + 2 \pqty{1 - \nu} B r \ln{r} - \pqty{1 + \nu} B r + 2 \pqty{1 - \nu} C r} + I \cos{\theta} + K \sin{\theta} \\ v_{\theta} & = \frac{4 B r \theta}{E} + H r + K \cos{\theta} - I \sin{\theta} \end{align*}

限制原点的刚体位移 — I=K=0I = K = 0; 位移单值 — B=0B = 0; 限制刚体转动 — H=0H = 0

位移解法

限制原点的刚体位移和转动, 通解为

ur=C1r+C2r,vθ=0 u_r = C_1 r + \frac{C_2}{r} \qc v_{\theta} = 0