\pdvσrr+r1\pdvτrθθ+rσr−σθ+fr=0\pdvτrθr+r1\pdvσθθ+2rτrθ+fθ=0
εrεθγrθ=\pdvurr=r1\pdvvθθ+rur=r1\pdvurθ+\pdvvθr−rvθ
ur — 径向位移; vθ — 环向位移
εrεθγrθ=E1(σr−νσθ)=E1(σθ−νσr)=G1τrθ
σrσθτrθ=1−ν2G(εr+νεθ)=1−ν2G(εθ+νεr)=Gγrθ
\pdv[2]εθr+r21\pdv[2]εrθ−r1\pdvγrθrθ+r2\pdvεθr−r1\pdvεrr−r21\pdvγrθθ=0
(\pdv[2]r+r1\pdvr+r21\pdv[2]θ)(\pdv[2]r+r1\pdvr+r21\pdv[2]θ)ϕ=0
σrσθτrθ=r21\pdv[2]ϕθ+r1\pdvϕr=\pdv[2]ϕr=r21\pdvϕθ−r1\pdvϕθr=−\pdvr(r1\pdvϕθ)
ur=ur,vθ=vθ
σrcos(v,r)+τrθcos(v,θ)=Rτrθcos(v,r)+σθcos(v,θ)=Θ
在环向边界 (r=const) 上:
σr=Nr(θ),τrθ=Tr(θ)
在径向边界 (θ=const) 上:
σθ=Nθ(r),τθr=Tθ(r)
σr=r1\pdvϕr,σθ=\pdv[2]ϕr,τrθ=0
ϕ=Alnr+Br2lnr+Cr2+D
σrσθτrθ=r2A+B(1+2lnr)+2C=−r2A+B(3+2lnr)+2C=0
εrεθτrθ=E1\bqty(1+ν)r2A+(1−3ν)B+2(1−ν)×Blnr+2(1−ν)C=E1\bqty−(1+ν)r2A+(3−ν)B+2(1−ν)×Blnr+2(1−ν)C=0
urvθ=E1\bqty−(1+ν)rA+2(1−ν)Brlnr−(1+ν)Br+2(1−ν)Cr+Icosθ+Ksinθ=E4Brθ+Hr+Kcosθ−Isinθ
限制原点的刚体位移 — I=K=0; 位移单值 — B=0; 限制刚体转动 — H=0
限制原点的刚体位移和转动, 通解为
ur=C1r+rC2,vθ=0