Skip to main content

7. 平面问题

Course NotesEngineering Mechanics for Civil EngineeringAbout 4 minAbout 1081 words

7.1 平面问题及其分类

平面应变平面应力εx=εx(x,y)σx=σx(x,y)εy=εy(x,y)σy=σy(x,y)γxy=γxy(x,y)τxy=τxy(x,y)εz=γzx=γzy=0σz=τzx=τzy=0 \begin{align*} & \text{平面应变} & & \text{平面应力} \\ & \varepsilon_x = \varepsilon_x(x, y) & & \sigma_x = \sigma_x(x, y) \\ & \varepsilon_y = \varepsilon_y(x, y) & & \sigma_y = \sigma_y(x, y) \\ & \gamma_{xy} = \gamma_{xy}(x, y) & & \tau_{xy} = \tau_{xy}(x, y) \\ & \varepsilon_z = \gamma_{zx} = \gamma_{zy} = 0 & & \sigma_z = \tau_{zx} = \tau_{zy} = 0 \end{align*}

1. 本构方程

应力 – 应变

σαβ=2Gεαβ+λεkkδαβ(α,β=1,2k=1,2,3) \sigma_{\alpha\beta} = 2 G \varepsilon_{\alpha\beta} + \lambda \varepsilon_{kk} \delta_{\alpha\beta} \quad \begin{pmatrix} \alpha, \beta = 1, 2 \\ k = 1, 2, 3 \end{pmatrix}

平面应变平面应力σx2G(1ν)12ν(εx+ν1νεy)σx=E1ν2(εx+νεy)=2G1ν(εx+νεy)σy=2G(1ν)12ν(εy+ν1νεx)σy=E1ν2(εy+νεx)=2G1ν(εy+νεx)τxy=Gγxyτxy=Gγxyσz=ν(σx+σy)=λ(εx+εy)σz=0τzx=τzy=0τzx=τzy=0 \begin{align*} & \text{平面应变} & & \text{平面应力} \\ & \sigma_x \frac{2 G (1 - \nu)}{1 - 2 \nu} \pqty{\varepsilon_x + \frac{\nu}{1 - \nu} \varepsilon_y} & & \sigma_x = \frac{E}{1 - \nu^2} (\varepsilon_x + \nu \varepsilon_y) = \frac{2 G}{1 - \nu} (\varepsilon_x + \nu \varepsilon_y) \\ & \sigma_y = \frac{2 G (1 - \nu)}{1 - 2 \nu} \pqty{\varepsilon_y + \frac{\nu}{1 - \nu} \varepsilon_x} & & \sigma_y = \frac{E}{1 - \nu^2} (\varepsilon_y + \nu \varepsilon_x) = \frac{2 G}{1 - \nu} (\varepsilon_y + \nu \varepsilon_x) \\ & \tau_{xy} = G \gamma_{xy} & & \tau_{xy} = G \gamma_{xy} \\ \hline & \sigma_z = \nu (\sigma_x + \sigma_y) = \lambda (\varepsilon_x + \varepsilon_y) & & \sigma_z = 0 \\ & \tau_{zx} = \tau_{zy} = 0 & & \tau_{zx} = \tau_{zy} = 0 \end{align*}

应变 – 应力

εαβ=1+νEσαβνEσkkδαβ(α,β=1,2k=1,2,3) \varepsilon_{\alpha\beta} = \frac{1 + \nu}{E} \sigma_{\alpha\beta} - \frac{\nu}{E} \sigma_{kk} \delta_{\alpha\beta} \quad \begin{pmatrix} \alpha, \beta = 1, 2 \\ k = 1, 2, 3 \end{pmatrix}

平面应变平面应力εx=1ν2E(σxν1νσy)εx=1E(σxνσy)εy=1ν2E(σyν1νσx)εy=1E(σyνσx)γxy=2εxy=1Gτxyγxy=2εxy=1Gτxyεz=0εz=νE(σx+σy)=ν1ν(εx+εy)γzx=γzy=0γzx=γzy=0 \begin{align*} & \text{平面应变} & & \text{平面应力} \\ & \varepsilon_x = \frac{1 - \nu^2}{E} \pqty{\sigma_x - \frac{\nu}{1 - \nu} \sigma_y} & & \varepsilon_x = \frac{1}{E} \pqty{\sigma_x - \nu \sigma_y} \\ & \varepsilon_y = \frac{1 - \nu^2}{E} \pqty{\sigma_y - \frac{\nu}{1 - \nu} \sigma_x} & & \varepsilon_y = \frac{1}{E} \pqty{\sigma_y - \nu \sigma_x} \\ & \gamma_{xy} = 2 \varepsilon_{xy} = \frac{1}{G} \tau_{xy} & & \gamma_{xy} = 2 \varepsilon_{xy} = \frac{1}{G} \tau_{xy} \\ \hline & \varepsilon_z = 0 & & \varepsilon_z = - \frac{\nu}{E} (\sigma_x + \sigma_y) = - \frac{\nu}{1 - \nu} (\varepsilon_x + \varepsilon_y) \\ & \gamma_{zx} = \gamma_{zy} = 0 & & \gamma_{zx} = \gamma_{zy} = 0 \end{align*}

弹性常数替换

Tips

弹性常数替换考试给

平面应力 => 平面应变

{E=E1ν2ν=ν1ν{G=Gν=ν1ν \begin{dcases} E^* = \frac{E}{1 - \nu^2} \\ \nu^* = \frac{\nu}{1 - \nu} \\ \end{dcases} \qq{即} \begin{dcases} G^* = G \\ \nu^* = \frac{\nu}{1 - \nu} \\ \end{dcases}

平面应变 => 平面应力

{E=E(1+2ν)(1+ν)2ν=ν1+ν{G=Gν=ν1+ν \begin{dcases} E' = \frac{E (1 + 2 \nu)}{(1 + \nu)^2} \\ \nu' = \frac{\nu}{1 + \nu} \\ \end{dcases} \qq{即} \begin{dcases} G' = G \\ \nu' = \frac{\nu}{1 + \nu} \\ \end{dcases}

2. 平衡方程

\pdvσxx+\pdvτxyy+fx=0\pdvτxyx+\pdvσyy+fy=0fz=0 \begin{align*} & \pdv{\sigma_x}{x} + \pdv{\tau_{xy}}{y} + f_x = 0 \\ & \pdv{\tau_{xy}}{x} + \pdv{\sigma_y}{y} + f_y = 0 \\ & f_z = 0 \end{align*}

3. 协调方程

第一协调方程

\pdv[2]εxy+\pdv[2]εyx\pdvγxyxy=0 \pdv[2]{\varepsilon_x}{y} + \pdv[2]{\varepsilon_y}{x} - \pdv{\gamma_{xy}}{x}{y} = 0

第二, 第三和第六协调方程

\pdv[2]εzy=0,\pdv[2]εzx=0,\pdvεzxy=0 \pdv[2]{\varepsilon_z}{y} = 0 \qc \pdv[2]{\varepsilon_z}{x} = 0 \qc \pdv{\varepsilon_z}{x}{y} = 0

4. 几何方程

εx=\pdvuxεy=\pdvvyγxy=2εxy=\pdvuy+\pdvvx \begin{align*} & \varepsilon_x = \pdv{u}{x} \\ & \varepsilon_y = \pdv{v}{y} \\ & \gamma_{xy} = 2 \varepsilon_{xy} = \pdv{u}{y} + \pdv{v}{x} \end{align*}

5. 边界条件

{σxcos(ν,x)+τxycos(ν,y)=Xτxycos(ν,x)+σycos(ν,y)=Y0=Z \begin{cases} \sigma_x \cos(\nu, x) + \tau_{xy} \cos(\nu, y) = \overline{X} \\ \tau_{xy} \cos(\nu, x) + \sigma_y \cos(\nu, y) = \overline{Y} \\ 0 = \overline{Z} \end{cases}

7.2 平面问题的基本解法

平面应力问题的基本方程
平衡方程

{\pdvσxx+\pdvτxyy+fx=0\pdvτxyx+\pdvσyy+fy=0 \begin{dcases} \pdv{\sigma_x}{x} + \pdv{\tau_{xy}}{y} + f_x = 0 \\ \pdv{\tau_{xy}}{x} + \pdv{\sigma_y}{y} + f_y = 0 \end{dcases}

几何方程

{εx=\pdvuxεy=\pdvvyγxy=\pdvuy+\pdvvx \begin{dcases} \varepsilon_x = \pdv{u}{x} \\ \varepsilon_y = \pdv{v}{y} \\ \gamma_{xy} = \pdv{u}{y} + \pdv{v}{x} \end{dcases}

本构方程 (平面应力)

{εx=1E(σxνσy)εy=1E(σyνσx)γxy=1Gτxy \begin{dcases} \varepsilon_x = \frac{1}{E} (\sigma_x - \nu \sigma_y) \\ \varepsilon_y = \frac{1}{E} (\sigma_y - \nu \sigma_x) \\ \gamma_{xy} = \frac{1}{G} \tau_{xy} \end{dcases}

{σx=E1ν2(εx+νεy)σy=E1ν2(εy+νεx)τxy=Gγxy \begin{dcases} \sigma_x = \frac{E}{1 - \nu^2} (\varepsilon_x + \nu \varepsilon_y) \\ \sigma_y = \frac{E}{1 - \nu^2} (\varepsilon_y + \nu \varepsilon_x) \\ \tau_{xy} = G \gamma_{xy} \end{dcases}

协调方程

\pdv[2]εxy+\pdv[2]εyx+\pdvγxyxy=0 \pdv[2]{\varepsilon_x}{y} + \pdv[2]{\varepsilon_y}{x} + \pdv{\gamma_{xy}}{x}{y} = 0

边界条件

{lσx+mτxy=Xlτxy+mσy=Y在力边界 Γσ 上 \begin{cases} l \sigma_x + m \tau_{xy} = \overline{X} \\ l \tau_{xy} + m \sigma_y = \overline{Y} \end{cases} \qq{在力边界 $\Gamma_{\sigma}$ 上}

{u=uv=v在位移边界 Γu 上 \begin{cases} u = \overline{u} \\ v = \overline{v} \\ \end{cases} \qq{在位移边界 $\Gamma_u$ 上}

1. 位移解法

平面应力位移法基本方程

G2u+G1+ν1ν\pdvx(\pdvux+\pdvvy)+fx=0G2v+G1+ν1ν\pdvy(\pdvux+\pdvvy)+fy=0 \begin{align*} & G \laplacian{u} + G \frac{1 + \nu}{1 - \nu} \pdv{x}(\pdv{u}{x} + \pdv{v}{y}) + f_x = 0 \\ & G \laplacian{v} + G \frac{1 + \nu}{1 - \nu} \pdv{y}(\pdv{u}{x} + \pdv{v}{y}) + f_y = 0 \end{align*}

平面应变位移法基本方程

G2u+G112ν\pdvx(\pdvux+\pdvvy)+fx=0G2v+G112ν\pdvy(\pdvux+\pdvvy)+fy=0 \begin{align*} & G \laplacian{u} + G \frac{1}{1 - 2 \nu} \pdv{x}(\pdv{u}{x} + \pdv{v}{y}) + f_x = 0 \\ & G \laplacian{v} + G \frac{1}{1 - 2 \nu} \pdv{y}(\pdv{u}{x} + \pdv{v}{y}) + f_y = 0 \end{align*}

2. 应力解法

协调方程 (B-M 方程)

2(σx+σy)=(1+ν)(\pdvfxx+\pdvfyy) \laplacian(\sigma_x + \sigma_y) = - (1 + \nu) \pqty{\pdv{f_x}{x} + \pdv{f_y}{y}}

平面应变的 B-M 方程

2(σx+σy)=11ν(\pdvfxx+\pdvfyy) \laplacian(\sigma_x + \sigma_y) = - \frac{1}{1 - \nu} \pqty{\pdv{f_x}{x} + \pdv{f_y}{y}}

3. 应力函数解法

Warning

三次应力函数考试不给

设体力势为 VV, 体力可表示为体力势的负梯度:

fx=\pdvVx,fy=\pdvVy f_x = - \pdv{V}{x} \qc f_y = - \pdv{V}{y}

平面问题的应力公式

σx=\pdv[2]ϕy+Vσy=\pdv[2]ϕx+Vτxy=\pdvϕxy \begin{align*} & \sigma_x = \pdv[2]{\phi}{y} + V \\ & \sigma_y = \pdv[2]{\phi}{x} + V \\ & \tau_{xy} = - \pdv{\phi}{x}{y} \end{align*}

应力函数解法的基本方程

Warning

重调和方程考试不给

22ϕ=(1ν)2V(平面应力)22ϕ=12ν1ν2V(平面应变) \begin{align*} & \laplacian{\laplacian{\phi}} = - (1 - \nu) \laplacian{V} & \text{(平面应力)} \\ & \laplacian{\laplacian{\phi}} = - \frac{1 - 2 \nu}{1 - \nu} \laplacian{V} & \text{(平面应变)} \end{align*}