平面应变εx=εx(x,y)εy=εy(x,y)γxy=γxy(x,y)εz=γzx=γzy=0平面应力σx=σx(x,y)σy=σy(x,y)τxy=τxy(x,y)σz=τzx=τzy=0
σαβ=2Gεαβ+λεkkδαβ(α,β=1,2k=1,2,3)
平面应变σx1−2ν2G(1−ν)(εx+1−ννεy)σy=1−2ν2G(1−ν)(εy+1−ννεx)τxy=Gγxyσz=ν(σx+σy)=λ(εx+εy)τzx=τzy=0平面应力σx=1−ν2E(εx+νεy)=1−ν2G(εx+νεy)σy=1−ν2E(εy+νεx)=1−ν2G(εy+νεx)τxy=Gγxyσz=0τzx=τzy=0
εαβ=E1+νσαβ−Eνσkkδαβ(α,β=1,2k=1,2,3)
平面应变εx=E1−ν2(σx−1−ννσy)εy=E1−ν2(σy−1−ννσx)γxy=2εxy=G1τxyεz=0γzx=γzy=0平面应力εx=E1(σx−νσy)εy=E1(σy−νσx)γxy=2εxy=G1τxyεz=−Eν(σx+σy)=−1−νν(εx+εy)γzx=γzy=0
⎩⎨⎧E∗=1−ν2Eν∗=1−νν即{G∗=Gν∗=1−νν
⎩⎨⎧E′=(1+ν)2E(1+2ν)ν′=1+νν即{G′=Gν′=1+νν
\pdvσxx+\pdvτxyy+fx=0\pdvτxyx+\pdvσyy+fy=0fz=0
\pdv[2]εxy+\pdv[2]εyx−\pdvγxyxy=0
\pdv[2]εzy=0,\pdv[2]εzx=0,\pdvεzxy=0
εx=\pdvuxεy=\pdvvyγxy=2εxy=\pdvuy+\pdvvx
⎩⎨⎧σxcos(ν,x)+τxycos(ν,y)=Xτxycos(ν,x)+σycos(ν,y)=Y0=Z
{\pdvσxx+\pdvτxyy+fx=0\pdvτxyx+\pdvσyy+fy=0
⎩⎨⎧εx=\pdvuxεy=\pdvvyγxy=\pdvuy+\pdvvx
⎩⎨⎧εx=E1(σx−νσy)εy=E1(σy−νσx)γxy=G1τxy
⎩⎨⎧σx=1−ν2E(εx+νεy)σy=1−ν2E(εy+νεx)τxy=Gγxy
\pdv[2]εxy+\pdv[2]εyx+\pdvγxyxy=0
{lσx+mτxy=Xlτxy+mσy=Y在力边界 Γσ 上
{u=uv=v在位移边界 Γu 上
G∇2u+G1−ν1+ν\pdvx(\pdvux+\pdvvy)+fx=0G∇2v+G1−ν1+ν\pdvy(\pdvux+\pdvvy)+fy=0
G∇2u+G1−2ν1\pdvx(\pdvux+\pdvvy)+fx=0G∇2v+G1−2ν1\pdvy(\pdvux+\pdvvy)+fy=0
∇2(σx+σy)=−(1+ν)(\pdvfxx+\pdvfyy)
∇2(σx+σy)=−1−ν1(\pdvfxx+\pdvfyy)
设体力势为 V, 体力可表示为体力势的负梯度:
fx=−\pdvVx,fy=−\pdvVy
σx=\pdv[2]ϕy+Vσy=\pdv[2]ϕx+Vτxy=−\pdvϕxy
∇2∇2ϕ=−(1−ν)∇2V∇2∇2ϕ=−1−ν1−2ν∇2V(平面应力)(平面应变)