ui=xi(a1,a2,a3)−ai
Eij=21(\pdvxmai\pdvxmaj−δij)=21(\pdvuiaj+\pdvujai+\pdvumai\pdvumaj)
\vb∗u\grad=\pdvuiaj\vb∗ei\vb∗ej,\grad\vb∗u=\pdvujai\vb∗ei\vb∗ej
\vb∗E=21(\vb∗u\grad+\grad\vb∗u+\grad\vb∗u⋅\vb∗u\grad)
λν=1+2\vb∗ν⋅\vb∗E⋅\vb∗ν
cos(\vb∗ν′,\vb∗t′)=(\vb∗ν⋅\vb∗t+2\vb∗ν⋅\vb∗E⋅\vb∗t)λ\vb∗νλ\vb∗t1
εij=21(ui,j+uj,i)\vb∗ε=21(\vb∗u\grad+\grad\vb∗u)
λ\vb∗ν=1+\vb∗ν⋅\vb∗ε⋅\vb∗ν
ε\vb∗ν=\vb∗ν⋅\vb∗ε⋅\vb∗ν
cos(\vb∗ν′,\vb∗t′)=(1−ε\vb∗ν−ε\vb∗t)\vb∗ν⋅\vb∗t+2\vb∗ν⋅\vb∗ε⋅\vb∗t
γ\vb∗ν\vb∗t=2ε\vb∗ν\vb∗t=2\vb∗ν⋅\vb∗ε⋅\vb∗t=2εijνitj
若 \vb∗ν,\vb∗t 为坐标轴方向的单位矢量, 则
γij=2εij(i=j)
εm′n′=βm′iβn′jεij
(\vb∗εij−ενδij)νj=0
εν — 主值, 沿主方向 \vb∗ν 的主应变
εν3−θ1εν2+θ2εν−θ3=0
θ1θ2θ3=εii=ε1+ε2+ε3=21(εiiεjj−εijεij)=ε1ε2+ε2ε3+ε3ε1=eijkε1iε2jε3k=ε1ε2ε3
21(\vb∗u\grad−\grad\vb∗u)=−\vb∗Ω
\vb∗Ω — 转动张量, 反对称, 只有三个独立分量 Ω12,Ω23,Ω31. 记
Ω12Ω23Ω31=ω3=21(\pdvu2x1−\pdvu1x2)=ω1=21(\pdvu3x2−\pdvu2x3)=ω2=21(\pdvu1x3−\pdvu3x1)
张量 \vb∗Ω 的反偶矢量
\vb∗ω=ω1\vb∗e1+ω2\vb∗e2+ω3\vb∗e3
−\vb∗Ω⋅\dd\vb∗x=\vb∗ω×\dd\vb∗x
εij=21(\pdvuixj+\pdvujxi)
εij,kl+εkl,ij−εik,jl−εjl,ik=0
\pdv[2]εxy+\pdv[2]εyx−\pdvγxyxy=0
实体符号形式
\curl\vb∗ε×\grad=0
ε11ε22ε33=\pdvu1x1;=\pdvu2x2;=\pdvu3x3;γ12γ23γ31=\pdvu1x2+\pdvu2x1=\pdvu2x3+\pdvu3x2=\pdvu3x1+\pdvu1x3
εrεθεz=\pdvur;=r1\pdvvθ+ru;=\pdvwzγrθγθzγzr=r1\pdvuθ+\pdvvr−rv=\pdvvz+r1\pdvwθ=\pdvwr+\pdvuz
εrεθεφγrθγθφγφr=\pdvurr=r1\pdvuθθ+rur=rsinθ1\pdvuφφ+rur+rctgθuθ=r1\pdvurθ+\pdvuθr−ruθ=rsinθ1\pdvuθφ+r1\pdvuφθ−rctgθuφ=\pdvuφr+rsinθ1\pdvurφ−ruφ