Skip to main content
8. 梁的弯曲

8.1 内力分析与内力图

剪力与弯矩的正负号规则

  • 使隔离体产生顺时针转动趋势的剪力为正
  • 使隔离体产生逆时针转动趋势的剪力为负
  • 使截开的横截面下边受拉、上边受压的弯矩为正
  • 使截开的横截面上边受拉、下边受压的弯矩为负

Course NotesEngineering Mechanics for Civil EngineeringLess than 1 minuteAbout 111 words
7. 杆件的拉伸和压缩

7.1. 轴力与轴力图

7.2. 拉、压杆件的应力与变形分析

7.3. 拉、压杆件的强度设计

7.4. 简单的拉、压静不定问题


Course NotesEngineering Mechanics for Civil EngineeringLess than 1 minuteAbout 60 words
1. 绪论

1.2 弹性理论的基本假设

  1. 连续性假设
  2. 弹性假设 — 线性弹性假设
  3. 均匀性假设
  4. 各向同性假设
  5. 无初应力假设

Course NotesEngineering Mechanics for Civil EngineeringLess than 1 minuteAbout 60 words
2. 应力理论

2.2 斜面应力公式

应力张量

\vbσ=σij\vbei\vbej \vb*{\sigma} = \sigma_{ij} \vb*{e}_i \vb*{e}_j


Course NotesEngineering Mechanics for Civil EngineeringAbout 2 minAbout 591 words
3. 应变理论

3.1 位移和应变

3.1.1 位移的描述

拉格朗日描述法

ui=xi(a1,a2,a3)ai u_i = x_i(a_1, a_2, a_3) - a_i


Course NotesEngineering Mechanics for Civil EngineeringAbout 3 minAbout 940 words
4. 本构关系

4.1 广义胡克定律

4.1.1 各向同性弹性体

逆弹性关系

εx=1E\bqtyσxν(σy+σz)=1+νEσxνEΘεy=1E\bqtyσyν(σz+σx)=1+νEσyνEΘεz=1E\bqtyσzν(σx+σy)=1+νEσzνEΘγxy=1Gτxyγyz=1Gτyzγzx=1Gτzx \begin{align*} & \varepsilon_x = \frac{1}{E} \bqty{\sigma_x - \nu \pqty{\sigma_y + \sigma_z}} = \frac{1 + \nu}{E} \sigma_x - \frac{\nu}{E} \Theta \\ & \varepsilon_y = \frac{1}{E} \bqty{\sigma_y - \nu \pqty{\sigma_z + \sigma_x}} = \frac{1 + \nu}{E} \sigma_y - \frac{\nu}{E} \Theta \\ & \varepsilon_z = \frac{1}{E} \bqty{\sigma_z - \nu \pqty{\sigma_x + \sigma_y}} = \frac{1 + \nu}{E} \sigma_z - \frac{\nu}{E} \Theta \\ & \gamma_{xy} = \frac{1}{G} \tau_{xy} \\ & \gamma_{yz} = \frac{1}{G} \tau_{yz} \\ & \gamma_{zx} = \frac{1}{G} \tau_{zx} \end{align*}


Course NotesEngineering Mechanics for Civil EngineeringLess than 1 minuteAbout 233 words
5. 弹性理论的微分提法、解法及一般原理

5.1 弹性力学问题的微分提法

平衡 (运动) 方程

\labeleq:5.1σij,j+fi=0(=ρu¨i) \begin{equation} \label{eq:5.1} \sigma_{ij, j} + f_i = 0 \quad (= \rho \ddot{u}_i) \end{equation}


Course NotesEngineering Mechanics for Civil EngineeringAbout 2 minAbout 612 words
7. 平面问题

7.1 平面问题及其分类

平面应变平面应力εx=εx(x,y)σx=σx(x,y)εy=εy(x,y)σy=σy(x,y)γxy=γxy(x,y)τxy=τxy(x,y)εz=γzx=γzy=0σz=τzx=τzy=0 \begin{align*} & \text{平面应变} & & \text{平面应力} \\ & \varepsilon_x = \varepsilon_x(x, y) & & \sigma_x = \sigma_x(x, y) \\ & \varepsilon_y = \varepsilon_y(x, y) & & \sigma_y = \sigma_y(x, y) \\ & \gamma_{xy} = \gamma_{xy}(x, y) & & \tau_{xy} = \tau_{xy}(x, y) \\ & \varepsilon_z = \gamma_{zx} = \gamma_{zy} = 0 & & \sigma_z = \tau_{zx} = \tau_{zy} = 0 \end{align*}


Course NotesEngineering Mechanics for Civil EngineeringAbout 4 minAbout 1081 words
7.5 极坐标中的平面问题

7.5 极坐标中的平面问题

平衡方程

\pdvσrr+1r\pdvτrθθ+σrσθr+fr=0\pdvτrθr+1r\pdvσθθ+2τrθr+fθ=0 \begin{align*} & \pdv{\sigma_r}{r} + \frac{1}{r} \pdv{\tau_{r \theta}}{\theta} + \frac{\sigma_r - \sigma_{\theta}}{r} + f_r = 0 \\ & \pdv{\tau_{r \theta}}{r} + \frac{1}{r} \pdv{\sigma_{\theta}}{\theta} + 2 \frac{\tau_{r \theta}}{r} + f_{\theta} = 0 \end{align*}


Course NotesEngineering Mechanics for Civil EngineeringAbout 2 minAbout 732 words